. single quotes.

.The symbol ‘—" is replaced by the symbol *:

- Context Free Gr.

28

All the productions with a given head (i.e., the non-terminals towards left of

- head) are grouped together and the body of the corresponding productions'
"by vertical bars and ends with terminator *;’ : P

The terminals are enclosed within single quotes and the variables are not enéloSed-within_ |

Markup Ianguiges: The most familiar markup language ‘is HTML ((Hyper Text Markup
Language). HTML is used to create Hypertext documents for use on the World Wide Web. In

a block of text is surrounded with codes that indicate how it should appear on the

compater screen. In HTML we can specify that a block of text, or a word, is linked to another file

on the Internet. Hypertext Markup Language is the code used to write most documents on the

Worlﬂ Wide Web. We can write the code using any text editor.

XML: XML stands for Extensible Maikup Language. XML is a system for defining, validating, A
and sharing document formats. XML uses tags to distinguish document structures, and
attributes. Instead of concentrating on formatting the text, XML is used to define the semantics.

Exeréivefs:

.
5
6,
7

|
8,

9,
10,
1.

What are the limitations of regular languages?
What is a context free grammar? Explain with example.
Let G=(V,T,P,S) be a CFG where

V={(S}
"T={a,b}
. P= :
S — aSa|bSb|e
}
S is the start symbol.

What is the language generated by this grammar?

Show that the language L = { a™" | m#n } is context free. -
Draw a CFG to generate a language consisting of equal number of a’s and b’s
Draw a CFG on {a, b} to generate a language L = { a"ww"b"|we Z*,n>1} .

-Obtain a context free grammar to generate properly nested parentheses structures

involving three kinds of parentheses (), [] and { }.
Obtain a context free grammar to generate the following language

. L={(w | we {a, b}*, n,(v) 2 ny(v) where v is any prefix of w}

Obtain a context free grammar to generate the following language
L = {01(1100)"110(10)" | n 2 0} '

Is the following language Context free?

L={a""|n2>0} ,

Obtain a context free grammar to generate the following language
L ={a"™ m>nandn >0}

L .
&,

228 & Finite Automata and Formal Languages

"~ 12. Obtain a CFG to generate unequal number of a’s and b’s o
13. For the regular expression (011+1)*(01)* obtain the context free grammar. i
14. What is leftmost derivation? Explain with example. o
... 15. What is rightmost derivation? Explain with example.
* 16. What is a derivation tree (or parse tree)? Explain with example .
17. What is the yield of a tree? Explain with example IR
18. What is partial parse tree (or partial derivation tree)? Explain with example. i
19. What is an ambiguous grammar? . £
- 20. Consider the grammar shown below from which any arithmetic expressnon Can be

obtained. 7 i

E — E+E ’ A B

E — E-E : !

E — E*E ;

y E — E/E

E — (B)lid : S

Show that the grammar is ambiguous. :i

21. Is the following grammar ambiguous? ,

X — aX]|a

22. Is the following grammar ambiguous?
- S, — iCtS|iCtSeS |a
C —- b
23. Is the grammar ambiguous?
S — AB|aaB
A — alAa
B - b
24. Show that the following grammar is ambiguous
S — aSbs
S — bSaS
S — ¢

~ 25. Obtain the unambiguous grammar for the grammar shown
E — E+E|E-E -
E — E*E|E/E
E' - ®]I
I. — a|b]c

and obtain the derivation for the expression (a+b) * (a-b)
- 26. What is inherently ambiguous grammar?
27. What is an S-Grammar (Simple Grammar)? Explain with example.

;? I

ConteXt Ftee Grammars & 229

28 Find a Simple Grammar (S-Grammar) for the regular expression aaa*b + b

29. Find a Simple Grammar (S-Grammar) to generate the language L = {a°b" |n 21}

In what way BNF notations are different from thc usual representation of the grammar"’

. Give an example.

31 Use BNF notation and describe the while statement in C language. Assume that
; assignment statement and condition for while are defined already.

32. Give the BNF notation to write a C program. Provide 6 or 7 productions generally
I describing the main program. Assume the rest are defined.

3} Obtain a dcnvatlon tree for the string a + b * a + b from the grammar shown below:

30.

”\l

— E+E
— E-E
— E*E
— E/E
— al|b

mmmotm

341. Consnder the grammar :

36

35

d.
e.
f.

S — 0]01S1|0Al
A — 1S|0AAI

Is the grammar ambiguous? Ans: yes

What language is accepted by the following grammars?
a.
b.
c.

S—0S0|1S1|e
S—0S0|1S1j0]1
S— 081|151 e
A—>0B1]|1B0
B—0BO|1B1|0]1]e
S—cS|cSdS|e -
S—cS|dS|c
S—>SS|dS|Sd|c

Is the grammar S — SS | (S) | € ambiguous? (Ans :
-applying LMD or obtain two derivations by applying RMD.

Yes) obtain two derivations by

230 K Finite Automata and Formal Languages

Summary:

VVVVVVVVVVVVVVVYVYVYY

Now! We know

»

- Advantages of regular and non-regular languages

Definition of Context Free Grammar (CFG)

To obtain CFGs for various types of context free languages
To check whether the given languages is CFG

Leftmost derivation '

Rightmost derivation

Derivation Tree(Parse tree)

Yield of a tree '

Partial derivation tree

Ambiguous grammar

Solution to various problems of ambiguous grammars
Inherently ambiguous grammar

Parsing

Simple grammar (S-Grammar)

To obtain S-Grammars for the specified languages
Applications of context free grammars '
BNF notations with applications

Solution to more than 30 problems of various nature

CFG Simplification & Normal Forms

What we will know after reading this chapter?

Method of substitution
Left recursion
Procedure to eliminate left recursion

VVVVVVVVVVVVYVVYVY

Simplification of the grammar with proof
Solutions to simplify various types of grammars
Useless variable

£ - Production

Nullable variable

Elimination of € - productions

Unit production

Elimination of unit productions -

Chomsky Normal Form (CNF)

Conversion of various types of grammars to CNF notation
Greiback Normal Form (GNF)

Conversion of various types of grammars to GNF notations
Solution to more than 15 problems of various nature ‘

Even kbough there is no restriction on the right hand side of the production for any CFG, it is
better in fact necessary to eliminate some of the useless symbols and productions. In the grammar
G, some of the symbols or productions may not be used to derive a string. Some symbols and
produtﬁons may never be used while deriving a string. So, these symbols and productions which_
will fever be used are useless and the correspondmg productions can be eliminated. For
exam;}le consider the grammar

S — aA|B
A — aAla

232 B Finite Automata and Formal Languages

In this grammar if we apply the production S — B, a string can never be derived. So, the symbol
B and the production S — B are useless and can be eliminated. In the following sections, we
discuss how to eliminate ' ” :
= - symbols in V from which string of terminals can not be derived
® symbols in (V U T) and not appearing in any sentential form
- ® ¢g- productions
* The productions of the form A — B i.e., unit productions

Thus, a CFG can be simpliﬁed by eliminating e-productibns, ﬁseless symbols, unit ;;rodilctions
etc. This chapter covers the simplification process and two normal forms: Chmosky normal form
and Greibach normal form. Co ':

6.1 Substitution o i

. !
The section 6.1 and 6.2 provides different substitution methods. This section deals with a simple
substitution wherein a non-terminal is replaced by the corresponding symbols on the rigﬁ hand
side. ' ' ' ' :

Theorem 6.1: Let G = (V, T, P, S) be a context free grammar. Consider the produétions . x

. A-> X|BX2
and
Byl ydl---ya

The production
A-> X|BX2 ‘

can be replaced by
A - x1yix; I X1y2X2 l | X1YaX2 -
and the production |

£

Boy IY2'---Yn

in P can be deleted. The resulting productions are added to P, and the variables are add dito V.
The language generated by -the resulting grammar G, = (V,, T, P,, S) is same as the lfﬂguage
accepted by G i.e., L(G,) =L(G).

¥

Example 6.1: Consider the productions A _ A
| A — aBa : ‘ ‘ o
B — ab|b

Simplify the grammar by substitution method.

Simplification of €FGs and Normal Forms & 233

Consiger the production
: . A — aBa

The right hand side of the production contains a non terminal B. The ‘non-terminal B can be
replaced by the production
-B—oablb

as shown below: A .
'g ‘ - A —> aaba|aba

So, th@resultmg grammar is G = (V, T, P, S) where

V={A}
: T={a, b}
' P={A — aaba | aba}
- A is the start symbol.

6.2 Left Recursion

A grammar can be changed from one form to another accepting the same language. Another
important substitution method which is often useful is left recursion. If a grammar has left
recursive property, it is undesirable as the parser constructed from this left recursive grammar
will enter into an infinite loop and the system may crash. For this reason left recursion should be
elmunhled from the grammar. The left recursion is defined as follows

Definiion: A grammar G is said to be left recursive if there is some non-terminal A such that

+
A= Ao -

In othct words, if the first symbol on the right hand side in a sentential form (either left
sentential or right sentential) is a variable and if the derivation is obtained from the same non-
: tenmnnl then we say that the grammar is having left recursion.

The left recursion in a grammar G can be eliminated as shown below.
Consiéer the A-production of the form
A - Ag IAaz I Aas...... AOL,,IB, | Bz | 63‘~~-"~ﬁm

where Bi’s do not start with A. Then the A productions can be replaced by

A > B]Al | BzAl | B;Al BmAl) .
A'—> o A'| oAl oAl JoLA' €

Note tllat a;’s do not start with A'.

Example 6.2: Eliminate left recursion from the following grammar

234 B Finite Automata and Formal Languages

E — E+T|T
T — T*F|F
F — (B)]id

The left recursion can be eliminated as shown below:

Given Substitution ~ Without left recursion T
A - A | B - | A > BA'andA'— o;A'le”
E-E+T|T |A=E E —TE |
=+T E' > +TE'|e
Bl =T '
. TST*F|F |A=T |T - FT!
o, =*F T' - *FT'fe
Bi= |
F— (B)|id Not applicable| F — (E)|id j !

The grammar obtained after eliminating left recursion is

E — TE :

E' — +TE'|e L q
T — FT' :
T - *FT'e

F — (B)|id

Example 6.3: Eliminate left recursion from the following grammar

S — Ab|a ,,
A - AbISa |

The non termmal S, even though is not having immediate left recursion, it has left recurand since
- S= Ab = Sab
ie.,
+
S = Sab. |
Substltutmg for S in the A-productlon can eliminate the md1rect left recursion from S. So the
given grammar can be written as

S — Abja
A — Ab|Aba|aa

Simplification of CFGs and Normal Forms 235

Now, A-production has left recursion and can be e_liminatéd as shown below:

Given Substitution | Without left recursion
A - A | B , A > BA'andA'—> a;A'E
S— Ab|a Not applicable| S — Abja
A—Ab|Aba|aa |[A=A A — aA'
B a=b A' 5 bA'|baA'|e
i t . \ a= ba
f Bi=aa
The W obtained after eliminating left recursion is
i3 S hnd Ab | a

A' — DbA'|baA'|e

63 | Simplification of CFG |

- In a CFG, it may be necessary to eliminate some of the useless symbols and productions.
Let G=(V, T, P, S) be a CFG. In the grammar G, some of the symbols or productions may not
be used to derive a string and some symbols and productions may not be reachable from the start
symbol. So, these symbols and productions which are not used in any sentential from are useless
and tbe corresponding productions can be eliminated. For example, consider the grammar

S — aA|B
A — aAla

In this grammar if we apply the production S — B, from B, a string can nevei" be derived. So, the
symliiol B and the production S —» B are useless and can be eliminated. So, in this section, let us
concentrate on how a grammar can be simplified by eliminating useless symbols and variables.

Mem 6.2:LetG=(V,T, P, S) be a CFG. We can find an equivalent grammar G' = (V', T, P,
S) such that for each A in (V' U T") there exists o and B in (V' U T*)" and x iq'I" for which .
S aAp S x

Noté:: It means'that any variable or symbols wliich are not reachable from the start symbol and
which are not used while deriving a string of terminals the symbols are useless and all
productions which contains those symbols are also useless. '

Prot)f The grammar G' can be obtained from G in two steps.

Stage 1: Obtain the set of variables and productions which derive only string of terminals i.e.,
Obtain a grammar G, = (V,, T}, Py, S) such that V, contains only the set of variables A for which

236 H Finite Automata and Formal Languages
AS x

where x € T*. The algonthm to obtain a set of variables from which only stnng of termmals can
be derived is shown below.

Step 1: [Initialize old_variables denoted by ov to ¢]
ov=9¢

Step 2: Take all productions of the form A — x where x € T" i.e., if the R.H.S of the production
contains only string of terminals consider those productions and corresponding non terminals on
L.H.S are added to new_variables denoted by nv. This can be expressed using the following
statement:

nv={A|A—xandxe T"} ' A

Step 3: Compare ov and nv. As long as the elements in ov and nv are not equal, repeat the
following statements. Otherwise go to step 4.

a. [Copy new_variables to old_variables]
ov=nv

b.. Add all the elements in ov to nv. Also add the variables which denve a ‘
string consisting of terminals and non-terminals which are in ov i.e.,

nv=ovU{A|A— y andye(vUT)'} i

The step 3 can be written in algorithmic notation as

while (ov !=nv)

{ :
OV =nv; it
nv= ovU{AlA—) y andye(ovUT) }

} ?

Step 4: When the loop is terminated, nv(or ov) contains all those non-terminals from whlcl;jonly
the string of terminals are derived and add those variables to Vi.

1.e., V.. =ov
Step.5: [Terminate the algorithm]

return V,
The complete algorithm is shown below:

ov=0
nv=0ovU{A|A—> y andye(ovUT)"}

Simplification of CFGs and Normal Forms & 237

while (ov !=nv)
{
oV =nv;
nv= ovU{AIA—) y andye(ovUT))

}
V|=

Note| that the variable V; contains only those variables from which string of terminals are
obtalbed The productions used to obtain V, are added to P, and the terminals in these
productions are added to T,. The grammar G, = (V,, T,, P;, S) contains those variables A in V,
such [hat o :

! ASx

for some x in T*. Since each derivation in G, is a derivation of G,

L(G)=L(G).

Stag& 2: Obtain the set of variables and terminals which are reachable from the start symbol. The
prodﬁctnons which are not used are useless. This can be obtained as shown below:

Gwen a CFG G, = (V,,T,,P.,S), we can find an equivalent grammar G' = (V,T',P\,S) such that for
each; X in (V! U T") there exists some & such.that

i

S3a

where X is a symbol in o i.e., if X is a variable, X € V' and if X is a termidal X € T'. Each
symbol X in (V' U T) is reachable from the start symbol S. The algorithm for this is shown
below

? Vi= (S}
Foreach A in V!
If A — athen
Add the variables in a.to V!
Add the terminals in a to T
? - Endif :
- Endfor
| .
Using this algorithm all those symbols (whether variables or terminals) that are not reachable
from the start symbol are eliminated. The grammar G' does not contain any useless symbol or
prodZu’ction. For each x € L(G") there is a derivation

S 2 oXB > x

Usmg these two steps we can effccnvely find G' such that L(G) = L(G') and the two grammars G
and G' are equivalent.

238 & Finite Automata and Formal Languages

Definition: A symbol X is useful if there is a derivation of the form
SLaXpSw

Otherwise, the symbol X is useless. Note that in. a derivation, finally we should get string of .
terminals and all these symbols must be reachable from the start symbol S. Those symbols and
productlons which are not at all used in the derivation are useless.

Example 6.4: Eliminate the useless symbols in the grammar

— aA|bB
— aAja
-~ bB

— ab|Ea
— aCId

mgow»wn

Stage 1 : Applying the algorithm shown in stagel, we can obtain a set of variables from whn}h we
get only string of terminals and is shown below.

. i

ov nv Productions
A o5 a
) ADE (P .o b { . e =

'E - d

‘ S —» aA

AD.E ADES A o aA
ADES |ADES | - g

The resulting grammar G; = (Vy, T, Py, S) where

V, = {ADES}

-Ty, = {ab,d}

P = | ‘
A — alaA
D — ab|Ea
E - d
S — aA

} ~
S is the start symbol

+
contains all those variables in V; such that A=> w where w € T*.

Stage 2: Applying the algorithm given in stage 2 of the theorem 6.2, we obtain the symbo]s such
that each symbol X is reachable from the start symbol S as shown below.

Simplification of CFGs and Normal Forms B 239

P T! \'A

- - S
S—>aA a S.A
A—alaA a S.A

The résulting grammar G' = (V', T', P, S) where

V! = {S,A}
| T = f{a}

PP = {
. S — aA
SR A — alaA.
? }
. S is the start symbol

such fhat each symbol X in (V' U T') has a derivation of the form
SHoXpAw.

Exan‘iiple 6.5: Simplify the following grammar

S — aAla|Bb|cC
| A — aB

B — alAa

? C — ¢CD

P D — ddd

Stagdi 1: Applying the algoﬁthm shown in stagel of theorem 6.2, we can obtain a set of variables
from|which we get only string of terminals and is shown below.

'

ov nv Productions
S 5 a
| o |S,B,D B —» a
L D —» ddd
S.B,D S,B,D,A |S —> Bb
A 5 aB
S,B,D,A [S,B,D,A |S —» aA
i) B - Aa

The i‘esulting grammar G, = (V,, Ty, P, S) where

Vi
T,

{S,B,D, A}
{a, b, d}

240 H Finite Automata and Formal Languages

P, = {
S — a|BbjaA
B — alAa
D — ddd
A — aB
}
S is the start symbol

) +
contains all those variables in V| such that A= w.

Stage 2: Applying the algorithm given in stage 2 of the theorem 6.2, we obtain the symbols
such that each symbol X is reachable from the start symbol S as shown below. '

P T v

- - S
S—a|Bb|Aa a,b [S,AB
A—aB a,b [S,AB
B—alAa a,b, |S A B

The resulting grammar G* = (V', T, P!, S) where

AVAR {S,A,B}

T' = {ab}

P =
S — a|BbjaA
A — aB
B — alAa

)
S is the start symbol

such that each symbol X in (V' U T") has a derivation of the form

S HaXpHw

6.4 Eliminating € - productions

A production of the form A — ¢ is undesirable in a CFG, unless an-empty string is derived from
the start symbol. Suppose, the language generatéd from a grammar G does not derive any empty
string and the grammar consists of €-productions. Such &-productions can be removed. An &-
production is defined as follows: . : - :

Definition: Let G = (V, T, P, S) be a CFG. A production in P of the form

A—> €

Simplification of CFGs and Normal Forms & 241

is called an e-productlon or NULL producuon After applying the production the variable A is
erased, For each A in V, if there is a derivation of the form

A >
then A is a nullable variable.

Exam(}le 6.6: Consider the grammar

Caow»w

In thiségrammar, the productions

; B—-e
i Cos¢

are e- productions and the variables B, C are nullable variables. Because there is a production

A —BC

and bath B and C are nullable variables, then A is also a nullable variable.

Deﬁmﬁon: Let G=(V, T, P, S) be a CFG where V set of variables, T is set of terminals, P is set
- of productions and S is the start symbol. A nullable variable is defined as follows.

| 1. If A—> ¢is a production in P, then A is a nullable variable.

If A — B,B;...B, is a production in P, and if B,, B,B, are nullable variables,
_ then A is also a nullable variable

- 3. The variables for which there are producuons of the form shown i in step 1 and
. step2are nullable variables.

Even ihough a grammar G has some g-productions, the language may not derive a language
containing empty string. So, in such cases, the ¢-- productions or NULL productions are not

needed and they can be eliminated.

Theorem 6.3: Let G = (V,T,P,S) where L(G) # €. We can effectlvely find an equivalent grammar
G' withno €- productions such that L(G') = L(G) - €.

Proof : The grammar G' can be obtained from G in two steps.

Stepl: find the set of nullable variables in the grammar G using the following algorithm.

242 K Finite Automata and Formal Languages
ov=¢
nv={A|A—> €}

while (ov !=nv)
{
ov=nv
nv=ov U{A|A—> a anda € ov }

}
V=ov
Once the control comes out of the while loop, the set V contains only the nullable variables..

Step2: Construction of productions P'. Consider a production of the form
A= XXXsooooon Xp.n21

where each X; is in (V U T). In a production, take all possible combinations of nullable variables
and replace the nullable variables with € one by one and add the resulting productions to P*. If the
given production is not an €- production, add it to P'.

Suppose, A and B are nullable variables in the production, then

1. First add the production to P'.
2. Replace A with € in the given production and add the resulting production to P*.
3. Replace B with € in the given production and add the resulting production to P‘
4. Replace A and B with € and add the resulting production to P'. :
5. If all symbols on right side of production are nullable variables, the resultmg
production is an €- production and do not add this to P'.

Thus, the resulting grammar G' obtained, generates the same language as generated by G w1thout
€ and the proof is straight forward.

Example 6.7: Eliminate all ¢- productions from the grammar

ABCa | bD
BC|b :
ble ‘ o
cle
d

TOw»w»
I

Stepl: Obtain the set of nullable varlables from the grammar. This can be done using step 1 of
theorem 6.3 as shown below.

Simplification of CFGs and Normal Forms H 243

ov 4 nv : Productions
¢ B.C B—¢
© Coe
~ B,C B.C.A A —->BC
B,C.A B,C.A -

V = {B.C.A} are all nullable variables.

SitepZ: Construction of productions P'.

’ Productions Resulting productions (P')
S — ABCa S - ABCa|BCa|ACa|ABa|Ca|
| ' Aa|Ba|a
f S — bD S —» bb

A — BC|b A — BC|B|C|b
| B — bje B —-b

C - c|8 C —c

D —>d D —»d

The grammar G' = (V', T, P, §) where

V= {SABCD}

| T = {abcd}

P = { ,

S — ABCa|BCa|ACa| ABa|
Ca|Aa|Baja|bD
A — BC|B|C]|b

B -5 b

| C —-¢

a D o d

} |

: - S is the start symbol

Example 6.8: Eliminate all e- productions from the grammar

S — BAAB
A — 0A2|2A0|e
B- — AB|IBle

Stepi Obtain the set of nullable variables from the grammar. This can be achieved using step 1
of theorem 6.3 as shown below.

244 B Finite Automata and Formal Languages

oV nv Productions
¢ AB A->e
: B-oe
" A.B AB,S S — BAAB
A, B.S A, B.S -

'V ={S. A. B} are all nullable variables.

Step2: Construction of productions P'. Add a non €-production in P to P'. Take all the
combinations of nullable variables in a production, delete subset of nullable variables one by one
and add the resulting productions to P". ' '

Productions Resulting productions (P')
S — BAAB S -—»BAAB|AAB|BAB|BAA|
o AB|BB|BA|AA|A|B
A 5 0A2 A - 0A2]02
- A — 2A0 A — 2A0]20
B — AB B — AB|B|A
B — IB B — IB|1.

We can delete the productions of the form A — A. In P, the production B — B can be deleted
and the final grammar obtained after eliminating €-productions is shown below. .

The grammar G' = (V', T, P*, S) where

vV = {S,A,B}
T' = {0,1,2)
P' = {
S — BAAB|AAB|BAB |BAA
|AB |BB|BA|AA|A|B
A — 0A2]|02]|2A0|20
B o AB|A|IB]1 :
} ‘ i
S is the start symbol :

6.5 Eliminating unit productions :
Consider the productions A — B. The left hand side of the production and right hand side of %the

production contains only one variable. Such productions are called unit productions. Formally, a

unit production is defined as follows.
i

Simplification of CFGs and Normal Forms & 245

Deﬁmtlon LetG= (V T, P, S) be a CFG. Any production in G of the form
A-B

whertit A, B € V is a unit-production.

In any grammar, the unit productions are undesirable. This is because one variable is simply
repla¢ed by another variable. Consider the productions
A—-B
» B—aB|b
In this example, :
: B — aB
B—b

are non unit productions. Since B is generated from A, whatever is generated by B, the same
thmgs can be generated from A alse. So, we can have

A—aB
A-b

and the production A — B can be deleted.

Theoirem 6.4: Let G = (V, T, P, S) be a CFG and has unit productions and no € -productions. An
equiv:alent grammar G, without unit productions can be obtained such that L(G) = L(G,) i.e., any
language generated by G is also generated by G,. But, the grammar G, has no unit productions.

A unit production in grammaf G can be eliminated using the following steps:

1. Remove all the productions of the form A — A
2, Add all non unit productions to P,.
3, For each variable A find all variables B such that

‘A3 B

i.e., in the derivation process from A, if we encounter only one variable in a
. sentential form say B (no terminals should be there), obtain all such variables.
4. Obtain a dependency graph. For example, if we have the producnons ,
' A—B
B->C
C—-B

the dependency graph will be of the form

AO—E_XO

246 H Finite Automata and Formal Languages

5. Note from the dependency graph that
a. A3 Bi.e., B can be obtained from A '
So, all non-unit productions generated from B can also be generated from A
b. A3 Ci.e., Ccan be obtained from A
So, all non-unit productions generated from C can also be generated from A
c. B3 Ci.e., Ccan be obtained from B :
So, all non-unit productions generated from C can also be generated from B
d. C3Bi.e., B can be obtained from C 1
So, all non-unit productions generated from B can also be generated from C
6. Finally, the unit productions can be deleted from the grammiar G.
7. The resulting grammar G,, generates the same language as accepted by G.

Exampie 6.9: Eliminate all unit productions from the grammar

AB

a
C|b
D
E|bC
d|Ab

moOw»n
LiLll

The non unit productions of the grammar G are shown below:

S —- AB

A —a

B - b

D - bC

E — d|Ab :
: - (6.1)
The unit productions of the grammar G are shown below:

B - C

C - D

D - E

The dependency graph for the unit-productions is shown below:

 ®—(0—(0)—B)

It is clear from the dependency graph that D % E. So, all non unit productions generated fmm E
can also be generated from D. The non unit productions from E are

E—d]|Ab ' : (6.2)

Simplification of CFGs and Normal Forms & 247

can also be obtained from D.
‘ ~ D—d|Ab
The resulting D productions are i

D> bC (fromé6.1) .
D—d|Ab 6.3)

Fromithe dependency graph it is clear that, C 2 E. So, the non unit productions from E shown in
(6.2) ¢an be generated from C. Therefore,
’ ‘ C—d|Ab

'From?the dependency graph it is clear that, C % D. So, the non unit pr;)ductions from D shown in
(6.3) can be generated from C. Therefore,

P _ C—d|Ab S 6.4)
Fromé the dependency graph it is clear that B3 C, B % D, D % E. So, all the productions
obtained from B can be obtained using (6.1), (6.2), (6.3) and (6.4) and the resulting productions
are: | ’
: B—-b ,
Z B—d|Ab .
B 5 bC L (69)

The ﬁnal grammar obtained after eliminating unit productions can be obtained by combining the ‘
productions (6.1), (6.2), (6.3), (6.4) and (6.5) and is shown below:

v! = {S,AB,CD,E}
T' = {ab,d}
P' = {
S — AB
A — a '
B — b|d|Ab|bC
: C — bC|d|Ab
D — bC|d|Ab
E — d|Ab
}
S is the start symbol

Exaniple 6.10: Eliminate unit productions from the grammar

S — A0|B
B —» Alll
A - 0]12|B

248 K Finite Automata and Formal Languages

The dependency graph for the unit productions
S—»B ‘
B—o>A
A—B

is shown below.

6—EC

" The non unit productions are

S — A0
B — 11
A - 0]12
(6. 6)
It is clear from the dependency graph that S % B,S %A, B > A and A 2 B. So, the new
productions from S, A and B are

S — 11|0]12
B 5 0]12
A - 11,
6.7
The resulting grammar without unit productions can be obtained by combining (6. 6) and
(6.7) and is shown below:

Vl = {S,A,B}
TN = {0,1,2}
PPo=
S — A0|11]|0]12
A —0]12]11
B — 11]0]12
}
S is the start symbol

Example 6.11: Eliminate unit productions from the grammar

Aa|B|Ca
aB | b

Db |D
E|d

ab

moOow®
i1l i

Simplification of CFGs and Normal Forms & 249

The d;ppendency graph for the unit productions

S—-B

C->D

D—oE
is shown below.

The non unit productions are
| Aa |Ca

aB |b

Db

d

ab

moaOww
LIl

(6.8)
It is ¢lear from the first dependency graph that S 2 B and so whatever is derivable from B it is
also qlenvable from S and the resulting S-productions are:

S — aB |b
(6.9)
It is clear from the second dependency graph C 2 D and D % E. So, whatever is derivable from
E is also derivable from D and the resulting D-productions are:

D — abl|d
' (6.10)
and %he D productions are also derivable from C since C % D. So, the resulting C-productions
are: '

C — Dblabld :
. (6.11)

The resulting grammar without unit productions can be obtained by combining (6.8), (6.9), (6.10)
and (6.11) and is shown below:

vl = {S,A B,CD,E}
T = {ab,d}
PP = {
S — Aa|CalaB|b
B — aB|b
C — Dblabjd
D - d|ab
E — ab

-}
S is the start symbol

250 K& Finite Automata and Formal Languages
Note : Given any grammar, all undesirable productions can be eliminated by removing

1. e-productions using theorem 6.3
2. unit productions using theorem 6.4
3. useless symbols and productions using theorem 6.2

in sequence. The final grammar obtained does not have any undesirable productions.

6.6 Chomsky Normal Form

In a. CFG, there is no restriction on the. right hand side of a production. The restrictions are
imposed on the right hand side of productions in a CFG resulting in various normal forms The
different normal forms that we discuss are:

1. Chomsky Normal Form (CNF)
2. Greiback Normal Form (GNF),

Chomsky normal form can be deﬁned as follows.

Definition: Let G = (V, T, P, S) be a CFG. The grammar G is said to be in CNF if all produétlons
are of the form

A — BC
or ‘ i
A—a "

where A BandCe Vandace T.
Note that if a grammar is in CNF, the nght hand side of the productlon should contam two

symbols or one symbol. If there are two symbols on the right hand side those two symbols must
be non-terminals and if there is only one symbol, that symbol must be a terminal.

Theorem 6.5: Let G = (V, T, P, S) be a CFG ‘which generates context free language without €.
We can find an equivalent context free grammar G' = (V', T, P', S) in CNF such that

L(G) = L(G")
i.e., all productions in G' are of the form
A —BC
or

A—>a. ‘

Proof: Let the grammar G has no €-productions and unit productions. The grammar G' can be
obtained using the following steps. -

i

Simplification of CFGs and Normal Forms & 251

Stepél-; Consider the productions of the form
‘ A > XXXy - - - X,

when 'n>2and each X € V(V u T) i.e., consider the productions having more than two symbols
on the right hand side of the production. If X isa terminal say a, then replace this terminal by a
corrq’sponding non- terminal B, and introduce the production

) ' ' B,—a

The pon—tcminals on the right hand side of the production are retained. The resulting productions
are added to P, The resulting context free grammar G, = (V,, T, P,, S) where each production in
P, isjof the form

A- AlAg-—---An .
or '
A—a

genchtes the same language as accepted by grammar G. So, L(G) = L(G)).

'Step;'Z‘;: Restrict the number of variables on the right hand side of the production. Add all the .
prod;uctions of G, which are in CNF to P'. Consider a production of the form)

| _ A— AA,——-A, .
where n 2 3 (Note that if n = 2, the production is already in CNF and n can not be equal to 1.
Because if n =1, there is only one symbol and it is a terminal which again is in CNF). The A-
production can be written as ‘

‘ ' D, - A:D;
D; — A;D;

: D, — A As ' :
These productions are added to P’ and new variables are added to V'. The grammar thus obtained
is in/CNF. The resulting grammar G' =(V', T, P', S) generates the same language as accepted by
Gie L(G)=L(G". | ‘

Example 6.12: Consider the grammar

S — OA|IB
A — OAA|IS|1
B — IBB|0S|0

Obtain the grammar in CNF.

All productions which are in CNF are added to P,. The productions which are in standard form -
and added to P, are:

252 & Finite Automata and Formal Languages

A—-)_l
B—-o0 (6.8)

Consider the productions, which are not in CNF. Replace the terminal a on right hand
side of the production by a non-terminal A and introduce the production A— a. This step has to
~ be carried out for each production which are not in CNF.

The table below shows the action taken indicating which terminal is replaced by the
corresponding non-terminal and what is the new production introduced. The last column shows
the resulting productions.

Given Action Resulting productions
Productions ‘ -
S— 0A | 1B | Replace 0 by B, and | S —B,A|B;B
introduce the production | B,—0

BO -0 B 1—1
Replace I by B; and
introduce the production

B, -1

A— 0AA/1S | Replace 0 by B, and { A>B,AA/B,S
introduce the production | B,—0

BO -0 Bl—')l
Replace 1 by B, and
introduce the production

Bl -1

B— 1BB/0S Replace 0 by B, and | B—B,BB/B,S
' introduce the production | B,—1
By—0 B,—0
Replace 1 by B; and
introduce the production
B —1

The grammar G, = (V,, T, Py, S) can be obtained by combining the productions obtamcd from the
last column in the table and the productions shown in (6.8).

Vl = {S,_A,B,Bo, l} ’ i
T, = {0, 1} : i
P = |
S — B,A|BB
A — BiAA|BS|I
B — B,BB|BiS|0 |
Bhb - 0 ' 4
B] e 3 l f

Simplification of CFGs and Normal Forms & 253 _

S is the start symbol

Stepi: Restricting the number of variables on the right hand side of the production to 2. The
productions obtained after stepl are:

S — ByA|BiB

A . — BoAA|BS|I
B — BBB{B,S|0
Bo —> O

B| -_ l

In xhe above productions, the productions which are in CNF are
| 'S — BoA|BB

A - BS|l
B 5 BS|0
Bo - O
' "B, o1]
| ' 6.9)
and add these productions to P'. The productions Wthh are not in CNF are :
A — BAA
B — B]BB

The followmg table shows how these productions are changed to CNF so that only two vanables

. are present on the right hand side of the production.

y .
‘.Given Action Resulting productions

. Productions B
. A-BAA Replace AA on R.HS | A— BeD,
; with variable D, and | D,> AA
introduce the production
: Dl — AA

. B—B,BB Replace BB on. RHS B —»B,D;
; with variable D> and | D,— BB

introduce the production : .
D, — BB 6.10)

The final grammar which is.in CNF can be obtained by combmmg the productions in (6.9) and
(6. 10) The grammar G' = (V', T ,P', S) is in CNF where

V:, = {S,A, B, By, B, Dy, D;}
T| = {09 l} .
Pl =

S — BoA|BB

254 H Finite Automata and Formal Languages

B — BS|0|B,D,

Bo e 4 0
B] - 1
D - AA
D. - BB
}
S is the start symbol

6.7 Greibach normal form (GNF):

In CNF there is restriction on the number of symbols on the right hand side of the production.
.Note that in CNF not more than two symbols on R.H.S of the production are permitted. If there is
only symbol that symbol must be a terminal and if there are two symbols, those two symbols
must be variables. ' _ ' ' ‘ v

In GNF there is no restriction on the number of symbols on the right hand side, but there
is restriction on the terminals and variables appear on the right hand side of the production.

Definition: Let G =(V, T, P, S) be a CFG. The CFG G is said to be in GNF if all the productions
are of the form ‘ '
~ A —aa

where a € T and a € V' i.e. the first symbol on the right hand side of: the production must be a
terminal and it can be followed by zero or more variables. ”

Theorem 6.6: Let G = (V, T, P, S) be a CFG generating the language L without €. An equivalent
grammar G1 generating the same language exists for which every production is of the form

A—>aq

- where A is a variable, a is a terminal and « is string of zero or more variables.

It means that any CFG can be converted into GNF notation. GNF is a very useful notation,: Ifa

- grammar is in GNF, it can be easily converted into Pushdown Automaton which can accept only

the context free languages. The Pushdown Automaton will be discussed in the next chapter. Now,

let us see how. to convert a given CFG to its equivalent GNF notation.
Procedure to obtain the grammar in GNF:

Step 1: Obtain the grammar in CNF.

Step 2: Rename the non-terminals to A, A, As,....... ‘

Step 3: Using substitution method as discussed in section 6.1, obtain the productions to the fofm

Ai— Ao fori<j ‘

Simplification of CFGs and Normal Forms & 255

where%a e V*. Note if all the productions are in this manner, the number of steps will be reduced
while converting.

Step 4: After substitution, if a grammar has left-recursion, we should eliminate left recursion as
discussed in section 6.2.

Step 5 It my be necessary to apply step 3 and/or step 4 more than orice to get the grammar in
GNF.

Now, let us concentrate on how a grammar can be converted into GNF.

Examble 6.13: Convert the following grammar

S — ABI|0
A — 00A|B
: B - 1Al
into GNF

Note:, A grammar should not have any unit productions and e-productions. In case if the grammar

has e+productions and unit productions perform the following operations one after the other:
1. Eliminate all e-productions. ’

Eliminate all unit productions

Obtain the grammar in CNF

Finally convert the grammar into GNF.

Rl

Since the grammar does not have any g-productions, in the next let us eliminate the unit
production

A—-B

The dependency graph for this can be
|

Itis :clear from the dependency graph that A = B. So, all the symbols derivable from B are also
derivable from A. So, in the production ~

A—00A|B
the variable B can be replaced by the string 1Al using the production
B — 1Al

Now, the A-production can be written as

256 H Finite Automata and Formal Languages
A — 00A | 1Al

The resulting grammar obtained after eliminating unit productions is shown below:

S - AB1|0
A - 00A | 1A1
B - 1A1

Now, the grammar has to be converted into CNF. Now replace the terminals by non-terminals if
they are not in CNF and the resulting grammar is

A 5 AAA|AAA,
B — AJAA,

A[- 1

Ay - 0

‘Now restrict the number of variables on the right hand side of the production to two and the
resulting grammar in CNF notation is:

A 5 AD;|AD;
B e d A1D3
A1 - 1
A -5 0
Dl - BAI
Dz 4 AOA
Dy o AA,

Now let us rename all the variables as shown below:

LetS=A; A=A, B=A;, Aj=A,, A=As, Di=Aq, Dy=A,, Ds;=Ag Now, the grammar can be re-
written as - :

Al g A2 A6 I 0

Az a4 A4 A? I A5A8
A 5 AsAz

A5 o 4 1

A4 — O

As — AsA;

Ay 5 AA

As — AA;

In the above productions, note that A; and As-productions are in GNF.

Simpliﬁéation of CFGs and Normal Forms & 257

Consider A; production: Substituting for As in As-production we get
: A3 - . AsAg = lAs
Now, A;s-production is in GNF.

"Consider A, productlon Since. A; and As producnons are in GNF substituting these
productions in A,-production we get

A: — A,«, A7 I A5A3 = OA-] ' lAg
Now, A-production is also in GNF.

Consider Ay productlon Since A, production is in GNF, substituting for A« in A;-production
we get

A — AA¢|0 = (0A7|1A3)A6|0 = OA7A6|1A8A6|O
Now, Al prbduction is also in GNF. ‘
Consider A¢-productiion: Now, in A¢-production, replacmg the first A; by
Aj-production

As - AsAs - (AsAgAs

we get the Ag production

Ag— AsAAs)
which is not in desired form. In the above production, replacing the first A5 by As-production, we
get Aa—productlon in GNF as shown below:

As > AsAzAs = 1AzAs

Consiﬂer A; production: Replacing the first A4 in A;-production we get
A, - OA |

which is in GNF.

Consider A production: Since A; production is in GNF, substituting for A, in Ag-production we
get

As — AAs = (0A;|1Ag) As = O0AsAs| 1Az As

which is in GNF. Since all productions are in GNF, the whole grammar is in GNF. The final
grammar which is in GNF is G = (V, T, P, S) where

\%
T
P

{ A[,AZ,A3,A4,A5,A6,_A7,A8 }
{0, 1}
{

A| g OA7A(, | lAgA(, I 0

258 B Finite Automata and Formal Languages

A, — 0A;]| 1A
A; — 1A
A, - 0
A5 e d 1
As o 1AzA;s
A, - OAz
Ag - 0A7A5 | lAg A5
}
S is the start symbol

Note: In this problem there are only substitutions and after repeated substitutions, we get the
grammar in GNF. '

i

Example 6.14: Convert the followirig grammar

A — BC
B > CA[b
C 5 AB|a
into GNF ' v ' -

Let A=A, B =A,, C=A;and the resulting grammar is

‘Al — A2A3
Az —_ A3A| I b
A3 - A]Az ' a

- First two productions are of the form
A — Ao fori<j
So, we consider A3-p1"oduction.
" Consider Aj-production: Substituting for A, in As-production we get
Ay 5 AAa = (AAdAzla = AMA|a
Again replacing the first A, in A;-production we get,

Ay - AAAla = (AsA|b)AsAz]a
: = A3A1A3A2I bA3A2|a

we get the resulting As-production as
Ay o> A3A|A3A2| bA;A> | a

which is having left recursion. After eliminating left recursion we get

Simplification of CFGs and Normal Forms & 259

A; — bAA;|a|bAAZ|aZ
yA - A1A3A2 I A|A3Azz .

Now, all A;-productions are in GNF.

Consider A;-productions: Since all As-productions are in GNF, substituting
A;-prpductions in A,-production we get

A; - (bA}Ag I a I bA\A;Z I aZ)A, |.b
= bA3A3A1 |aA‘ | bA}AgZA| |aZA| I b

whicl; is in GNF. Now, all A,-productions are in GNF.

Consider A,-productions: Since all A;-productions are in GNF, substituting
A,-productions in A,-production we get,

A — AA; = (bA;AzA,|aA||bA3A22A|| aZA, | b)A;
= bA3A2A|A3 I aA.A; IbAgAzZA]A:;I aZA|A3 I bA3

Now,5 A,-productions are also in GNF.

Consider Z-productions: Since A,-productions are in GNF, substituting A,-production in Z-
production we get Z-productions also in GNF as shown below:

Z - A]AwAz | A1A3Azz
= (bA3A2A A3| aA,A; IbA3Azz.A A3| aZA.A3 | bA3)A3A2
(bA3A2A1A; | aA A3 [bA3ALZA, A aZA 1A | bA3) A3AZ

which can be written as

Z —_ bA3A2A A3A3Az| aA1A3A3A2| bA3A2ZA]A3A3AzI

aZAA; AsAz bAAGA,
Z — bA3A2A|A3A3A2 ZI aA,A3A3A2 ZI bA;AaZA A3A3A1m
aZA, A3 A3A2Z| bA3AAZ

Since all productions are in GNF, the resulting grammar is also in GNF. So, the final grammar
obtained in GNF notation is

G=(V,T,P,S)
where

= -(Alv A?.’ A}a Z)
T = {a, b}

260 H Finite Automata and Formal Languages

P={
A, — bA3AAAs|aA A3 bASALZA Asl aZA A;s | bA;
Ag b d bA3A2A| |aA| I bA3A32A| laZA, I b
A3 - bA3A2 l a I bA3AzZ I aZ
Z - bA;AzA)A3A3A3I 8A1A3A3A3| bA3AgZA]A3A3A2|
) aZA,A; A3All bA3A3A3
Z - bA3A2A|A3A3A22|aA,A3A3A3 Z' bA;AzZA|A3A3AzzI

aZA A; A3A.Z} bA3AASZ

}
A, is the start symbol

Example 6.15: Convert the following grammar

S — AA|O
A 5 S§|1
into GNF _ '

Let S = A, and A = A;. After substitution, the resulting grammar obtained is shown below:
‘ Al — Az Az ' 0
Az o 4 A] A1 I 1

First production is of the form
Ai— A,-a for i <j

So, we consider Az-prpduction.
Consider A;-production: Substituting for A, in A,-production we get.
Az —> A2A2 All 0A1 I 1

The above grammar is having left recursion. After eliminating left recursion we get
A, — 0A||1|0A,Z|1Z
Z 5 AAJAAZ

Now, all A;-productions are in GNF.
Consider A;-productions: Since 511 A;-productions are in GNF, substituting
A;-productions in A,-production we get
A| - OA]AZ' 1A2 I OA]Z Azl 1Z A2| 0
which is in GNF. Now, all A,-productions are in GNF.
Consider Z-productions: Since A,-productions are in GNF, substituting A,-production 1n Z-
production we get Z-productions also in GNF as shown below:

Z —_ OA]All 1A| IOAIZ A]I lZA]
Z — 0AAZ |1AZ |0AZA\Z|1ZAZ

